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Abstract. The electroweak coupling between intense neutrino beams and strongly degenerate relativis-
tic dense electron-positron magnetoplasmas is considered. The intense neutrino bursts interact with the
plasma due to the weak Fermi interaction force, and their dynamics is governed by a kinetic equation. Our
objective here is to develop a kinetic equation for a degenerate neutrino gas and to use that equation to
derive relativistic magnetohydrodynamic equations. The latter are useful for studying numerous collective
processes when intense neutrino beams nonlinearly interact with degenerate, relativistic, dense electron-
positron plasmas in strong magnetic fields. If the number densities of the plasma particles are of the order
of 1033 cm−3, the pair plasma becomes ultra-relativistic, which strongly affects the potential energy of the
weak Fermi interaction. The new system of equations allows several neutrino-driven streaming instabilities
involving new types of relativistic Alfvén-like waves. The relevance of our investigation to the early universe
and supernova explosions is discussed.

PACS. 95.30.Qd Magnetohydrodynamics and plasmas – 97.60.Bw Supernovae –
97.10.Cv Stellar structure, interiors, evolution, nucleosynthesis, ages

1 Introduction

The neutrino was introduced by Wolfgang Pauli in 1930
to explain a problem concerning nuclear beta decay in
which a neutral particle is emitted together with an elec-
tron so that the sum of the energies of the neutral parti-
cle and the electron is almost constant. Enrico Fermi in
1933 formulated a theory of beta decay. This theory in-
volved a new interaction in which the neutron changed
into a proton, an electron and an antineutrino. It is well-
known [1,2] that neutrinos were copiously produced in the
early universe, as well as in supernova explosions and in
the sun. Neutrinos are the most slippery and elusive of
the subatomic particles. They are created in connection
with numerous plasma processes [1–6] and they are sup-
posed to carry almost no mass and no electric charge in
vacuum. However, when neutrinos propagate through the
plasma, their propagation characteristics are significantly
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modified due to their interactions with the plasma elec-
trons and the W+ bosons. Specifically, the energy spec-
trum of the neutrinos acquires contributions due to the
electroweak Fermi-interactions [7–9]. The latter are asso-
ciated with a force which produces charged currents due
to the neutrino-plasma couplings.

Recently, there has been a great deal of interest [10–18]
in investigating numerous collective processes in neutrino
plasma physics, and to transfer knowledge from plasma
physics to elementary particle physics, high energy astro-
physics, and cosmology. The most important stimulus to
the development of neutrino plasma physics has been asso-
ciated with the understanding of several outstanding puz-
zles in astrophysical objects and also in the early universe.
For example, recent theoretical works [13,15–17] suggest
that intense neutrino beams interact with a dense plasma
in a collective manner due to the electro-weak Fermi in-
teraction. This nonlinear neutrino-plasma coupling turns
out to be significant because the potential energy [8] of
the Fermi-interaction is proportional to the number densi-
ties of the plasma particles. Nonlinear effects produced by
the neutrino driving force [10,11] include the generation
of plasma waves [12,13,15], density inhomogeneities [17],
and magnetic fields [18]. Studies of nonlinear neutrino-
plasma interactions are of significant importance in con-
nection with anomalous absorption of neutrinos causing
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supernova explosions, as well as with the generation of
magnetic fields on the surfaces of neutron stars.

A supernova explosion occurs when the inner part of a
star is very dense (mass density ρ ∼ 1014 g/cm3) and
in a very short time (about 1 millisecond). In such a
dense medium, the electrons and positrons as well as the
neutrinos are in a strongly degenerate state [19–21]. In
this case, we have an ultra-relativistic Fermi gas. Fur-
thermore, the magnetic field generated during the su-
pernova explosions may approach the Schwinger’s value
B ∼ m2

0c
3/e � 4.4 × 1013 G and more, where m0 is

the electron rest mass, c is the speed of light in vacuum,
and e is the magnitude of the electron charge. As was
shown by Bisnovatyi-Kogan [22], the presence of rotation
may increase the magnetic field by an additional factor
of 103–104. Obviously, in the presence of such magnetic
fields it is necessary to consider the thermodynamics of
the electron-positron and neutrino medium, the quantiza-
tion of the energy of the particles, etc.

Influence of an external magnetic field on the propa-
gation of neutrinos in an electron plasma was examined in
references [23–25]. This result was applied by Kusenko and
Segrè [26] to explain the birth (kick) velocity of newly born
pulsars. Shukla and Stenflo [27] investigated the propaga-
tion of neutrinos in an electron plasma with an equilib-
rium density gradient and a sheared magnetic field. Very
recently, Kuznetsov and Mikheev [28] considered neutrino
interactions with a strongly magnetized electron-positron
plasma. They carried out studies of the average losses of
the neutrino energy and momentum as well as of the in-
tegral action of the neutrinos. Gvozdev and Ognev [29]
estimated the efficiency of electron-positron pair produc-
tion by the neutrino flux from the accretion disk of a Kerr
black hole.

In the present paper, we consider the electrodynamics
of an electron-positron-neutrino gas in the presence of a
strong magnetic field. Namely, we consider the electron-
positron dense plasma, when collisions between particles
are very frequent. In this case, the mean velocities of the
different components of the gas must, in fact, be almost
equal. Based on this fact, we develop relativistic magne-
tohydrodynamic (RMHD) equations for the nonlinearly
interacting neutrinos and the electron-positron pairs in a
strong external magnetic field. In our consideration, the
conservation of the number of all particles is satisfied, i.e.,
the neutrino scattering processes on electron-positrons,
νe∓ → νe∓, take place. The newly derived RMHD equa-
tions are then used to consider the propagation of Alfvén-
like and MHD waves in the presence of neutrino beams.
The dispersion relations for different interesting cases are
obtained and analyzed. Some new wave modes and in-
stabilities are found. The relevance of our investigation
to MHD turbulence in astrophysical settings is also dis-
cussed.

2 Interaction energies

In relativistic quantum theory the electron (positron) en-
ergy levels εj,δ in a strong magnetic field B, including

Pauli paramagnetism as well as Landau diamagnetism,
can be expressed as [30]

εj,δ = c

√
p2

z +
e�B

2c
(2j + 1 + δ) + m2

0c
2, (1)

where pz is the momentum component along the mag-
netic field direction, m0 is the rest mass of the electrons
(positrons) and δ = ±1; the latter defines the direction
of the spin of the particles in the magnetic field. Further-
more, 2π� is the Planck constant, and j = 0, 1, 2...

Here we consider the case of a strong magnetic field
satisfying

√
eB�c−µ � T , where µ is the chemical poten-

tial, so that only the Landau ground level is filled (j = 0),
i.e. we are taking into account only the Pauli paramag-
netism and the self-energy of the particles. Thus

ε0,δ = c

√
p2

z +
e�B

2c
(1 + δ) + m2

0c
2. (2)

We know that the effective electroweak interaction (scalar
potential) energy of an electron-positron gas with neutri-
nos in the steady state is

Uep =
√

2GF

(
1
2

+ 2 sin2 ΘW

)
(ne − np) , (3)

where GF = 9 × 10−38 eV cm3 is the Fermi constant
for weak nuclear interactions, sin2 ΘW ∼ 0.23, and ne

and np are the number densities of the electrons and
positrons, respectively. The contributions of neutrons and
anti-neutrons to equation (3) have been neglected be-
cause we consider the case where their number densities
are much smaller than the electron and positron number
densities. We are also discarding the contributions of the
anisotropies of the electron/positron and neutrino distri-
bution functions [11] as well as of the effective electroweak
vector potential coupling between the pairs and the neu-
trinos [14]. This is justified as long as ve,p ·vν � c2, where
ve,p is the mean velocity of the electrons/positrons and vν

is the neutrino velocity. For a non-stationary scenario, the
total force fep on the neutrinos is [14] approximately

fep = −√
2GF

[∇(ne − np) + c−2∂t(Je − Jp)

−c−2vν ×∇× (Je − Jp)
]
,

where Jj = njvj .
Taking into account the fact that in a strong magnetic

field the number J of energy levels per unit volume in an
interval ∆pz is

J =
eB∆pz

4π2�2c
, (4)

we rewrite the expression (3) as

Uep =
√

2GF
eB

c

1
2π2�2

∫
dpz

(
1

e
ε−µ

T + 1
− 1

e
ε+µ

T + 1

)
,

(5)
where ε = ε0,δ. In the strongly degenerate case, we obtain

Uep =
√

2GF
eB

�c

(
3π2
)1/3

2π2
n1/3, (6)
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where n is a density, defined in terms of the Fermi mo-
mentum pF, i.e. n = (pF/�)3 /3π2.

But if the electron-positron gas influences the neutrino
behavior, the reverse can also exist. The neutrinos per unit
volume can act on the electrons (positrons) in a potential
field, which is proportional to the density of the neutri-
nos nν , i.e. the neutrino gas interacts with each electron
and positron through a potential energy

Uν =
√

2GFnν . (7)

We note that according to references [6,10], we have ne-
glected non-potential interactions in (7). In general, the
neutrino driving force acting on the electrons is of the
form [14] fν = −√

2GF

(∇nν + c−2∂tJν

)
, where Jν =

nνvν is determined from ∂tnν + ∇ · Jν = 0. It turns out
that the ∂tJν contribution is insignificant as long as the
phase speed of the plasma disturbance is much smaller
than the speed of light.

3 Relativistic hydrodynamic equations
for the neutrino gas

For a neutrino gas in an isotropic plasma one can ignore
the spin of the neutrinos and derive a kinetic equation for
the distribution function (spectral function) of the neutri-
nos Nν(k, ων , r, t) or Nν(pν , εν , r, t), where pν = �k and
εν = �ων, i.e.

∂Nν

∂t
+

c2

εν
(pν · ∇)Nν + fep · ∂Nν

∂pν
= 0. (8)

Using the results of the previous section, we have expres-
sions for the forces fep = −∇Uep −√

2GFc−2∂t(Je − Jp),
where Uep is the Fermi weak interaction potential energy,
given by the expressions (3, 5, 6).

We now start from equation (8) to obtain a set of rela-
tivistic fluid equations [10] for the macroscopic parameters
of the neutrino gas (the neutrino density nν , the temper-
ature Tν , the entropy, and the average velocity uν). We
already noted in Section 1 that to have a mutual influ-
ence of neutrinos and electrons (positrons) on each other,
it is necessary to have large densities of each species of
particles. But in this case, one has a strong degenerate
Fermi gas or relativistic temperatures. In both cases, the
mean value of the kinetic energy and the mean density of
the particles have to be obtained in their proper reference
frame. Also, the mass of the particles depends on the den-
sity (strongly degenerate gas) or on the temperature in a
complex way.

We first introduce our basic definitions in the rest sys-
tem, namely the neutrino density and the mean velocity

n′
ν(r, t) =

∫
dp′

νN ′
ν , (9)

and

uν =
c2

n′
ν

∫
dp′

ν

ε′ν
p′

νN ′
ν , (10)

where the prime denotes the quantities in the rest system.
The transition to the laboratory reference frame can

be realized with the help of the Lorentz transformation
for the energy and momentum of the neutrino

εν = γν(ε′ν + uν · p′
ν), piν = sν

ikp′kν+c−2γνuiνε′ν ,

sν
ij = δij + (γν − 1)

uiνujν

u2
ν

and γν = (1 − u2
ν/c2)−1/2.

(11)

In the relativistic system, there are several kinds of invari-
ant quantities. For example, the distribution function of
the particles and the ratio dp/ε are invariant quantities.
Hence

dpν

εν
=

dp′
ν

ε′ν
· (12)

Using the Lorentz transformation for the energy and the
momentum of neutrinos, we obtain from equation (8) the
equation of continuity

∂nν

∂t
+ ∇ · (nνuν) = 0, (13)

where nν = n′
νγν and

uν =
c2

nν

∫
dpν

pν

εν
Nν . (14)

The momentum conservation equation is

1
c2

(
∂

∂t
+ uν · ∇

)
(γνW ′

νuν) = − 1
nν

∇Pν + fep, (15)

and for the energy of the neutrinos we have

∂

∂t

(
γνnν 〈ε′ν〉 + γ2

ν

u2
ν

c2
Pν

)
+ ∇ · (γνnνW ′

νuν) =

nνuν · fep, (16)

where 〈ε′ν〉 is the internal energy of neutrinos 〈ε′ν〉 =
(1/nν)

∫
dp′

νN ′
νε′ν , Pν is the pressure of the neutrinos, and

the enthalpy W ′
ν (a heat function) of the neutrino is

W ′
ν = 〈ε′ν〉 +

γνP ′
ν

nν
= 〈ε′ν〉 +

P ′
ν

n′
ν

· (17)

The last term in the right-hand side of equations (15, 16)
describes the electro-weak coupling between the neutrinos
and pairs.

Equations (13–16) are valid for arbitrary temperatures
and densities. Furthermore, we can now consider interac-
tions between neutrino and electron-positron gases when
they are strongly degenerate and relativistic. Also we note
that for densities of particles up to 1032 cm−3, the Fermi
momentum pF is much larger than mαc (α = e, p, ν),
so that both the neutrinos and the pairs become ultra-
relativistic. In this case, we can write for the internal en-
ergy of the particles, 〈ε′α〉 = (3/4)εFα, for the pressure
P ′

α = n′
αεFα/4, for the enthalpy n′

αW ′
α = n′

α 〈ε′α〉 + P ′
α,

where εFα = (3π2)1/3
�cn

′1/3
α . For convenience, we will

introduce the effective mass of the particle as mα =
εFα/c2 = (3π2)1/3(�/c)n′1/3

α .
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4 MHD equations for the pairs

We now present a set of relativistic hydrodynamic equa-
tions for the electron-positron fluid [31], including the neu-
trino driving force. We have

∂n

∂t
+ ∇ · (nu) = 0, (18)

1
c2

(
∂

∂t
+ u · ∇

)
(γWu) = − 1

n
∇P + f , (19)

and

∂

∂t

(
γn 〈ε〉 + γ2 u2

c2
P + U

)
+ ∇ · (γnWu + S) =

− 2
√

2GFn(u · ∇)nν , (20)

where n = γn′ is the density of the electrons (positrons)
in the laboratory system γ =

(
1 − u2/c2

)−1/2 is the rel-
ativistic gamma factor for the electrons (positrons), u is
the mean velocity of the e−+e+ fluids, W = 〈ε〉+γP/n is
the heat function (enthalpy), 〈ε〉 and P = nT are the in-
terval energy and pressure, respectively, S = (c/4π)E×B
is the Poynting vector, U = (E2 + B2)/8π is the electro-
magnetic energy density, and f is the force which acts on
the e− + e+ fluid. The components of f are

fi = − 1
n

∂Tij

∂xj
− 1

nc2

∂Si

∂t
− 2

√
2GF

(
∇inν +

1
c2

∂Jνi

∂t

)
,

(21)
where Tij = (1/4π)

[−EiEj − BiBj + (1/2)δij(E2 + B2)
]

is the flux tensor of the electromagnetic field energy
density. The last terms in the right-hand side of equa-
tions (20, 21) represent the contributions associated with
the neutrino driving force including the time derivative
neutrino flux Jν that is determined from ∂tnν +∇·Jν = 0.

In the case of an ideal conducting medium, the induc-
tive electric field satisfies the relation E = −c−1u × B,
and for the magnetic field we have the induction equation

∂B
∂t

= ∇ × (u × B). (22)

5 Neutrino driven MHD waves

Let us consider the propagation of small perturbations
in a homogeneous magnetoactive plasma-neutrino beam.
We then linearize (13–16) with respect to the pertur-
bations, which are represented as nν = n0ν + δnν and
uν = u0ν + δuν , where the subscript 0 denotes the con-
stant equilibrium value, and δnν and δuν represent small
variations. After linearization of (13–16), we look for plane
wave solutions that are proportional to exp[i(k · r − ωt)],
where k and ω are the wave vector and the frequency,
respectively.

To derive the dispersion relation, we should remember
that (15, 16) as well as (19, 20) contain the internal energy,

enthalpy and pressure, which are defined in the rest sys-
tem. Linearizing them and writing them in the laboratory
system, we obtain from (17)

δW = δεF =
ε′0F
3

δn′

n′
0

=
ε0F

3

(
δn

n0
− γ2

0

u0

c2
δuz

)
, (23)

which coincides with δP ′/n′. Furthermore, the perpendic-
ular and parallel components of the particle momentum
are given by, respectively,

δp⊥ = m0γ0δu⊥

and

δpz =
m0γ0

3

[
(2γ2

0 + 1)δuz + u0
δn

n0

]
, (24)

where m0 = W0/c2 = ε0F /c2 and u0 = u0z. The pertur-
bations of the Poynting vectors are δS‖ = 0 and

δS⊥ =
B2

0

4π

(
δu⊥ − u0

δB⊥
B0

)
, (25)

and for the perturbation of Tij we have

δTij =
1
4π

(δijB0δBz − B0iδBj − B0jδBi) . (26)

Using the relations (23, 24) for the electron-positron fluid,
we obtain a set of linear equations, describing the excita-
tion of waves in an electron-positron fluid in the presence
of a relativistic neutrino flux.

The linear continuity equation for the electron-
positron fluid is

(ω − kzu0)
δn

n0
= k⊥ · δu⊥ + kzδuz. (27)

The relation between the momentum and velocity were
given by (17), so that

(ω − kzV )
δn

n0
=

k⊥ · δp⊥
m0γ0

+
3kzδpz

m0γ0(2γ2
0 + 1)

(28)

where V = 2u0γ
2
0/(2γ2

0 + 1).
The equations of motion for δp⊥ and δpz are

[(
1 +

V 2
A

c2

)
ω − kzu0

]
(k⊥ · δp⊥) =

m0γ0c
2k2

⊥
(2γ2

0 + 1)
δn

n0
− u0k

2
⊥δpz

(2γ2
0 + 1)

+
(

k2V 2
A − kzu0ω

V 2
A

c2

)
m0γ0

δBz

B0
+ ενk2

⊥
δnν

n0ν
, (29)

and

(ω − kzV ) δpz =
m0γ0c

2

(2γ2
0 + 1)

kz
δn

n0
+ ενkz

δnν

n0ν
, (30)
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with VA = B0/(4πn0m0)1/2 and εν = 2
√

2GFn0ν(1 −
ω2/k2c2). From equation (22) we obtain

(ω − kzu0)
δB⊥
B0

= −kzδp⊥
m0γ0

, (31)

(ω − kzu0)
δBz

B0
=

k⊥ · δp⊥
m0γ0

, (32)

and k⊥ ·δB⊥+kzδBz = 0. To equations (28–32) we should
add the equations for the neutrino flux in order to make
the set of equations closed.

As for the electron-positron plasma, the neutrino gas
is also in a degenerate state. We obtain for the density
perturbation of the neutrinos
[
(ω − kzVν)2 − c2

(2γ2
0ν + 1)

(
k2
⊥ +

3k2
z

(2γ2
0ν + 1)

)]
δnν

n0ν
=[

k2
⊥ +

3k2
z

(2γ2
0ν + 1)

]
δUep

m0νγ0ν
, (33)

where Vν = 2u0νγ2
0ν/(2γ2

0ν + 1), and δUep is the pertur-
bation of the potential energy (e.g. Eq. (6)) of the Fermi
weak interaction, from which by using equation (24), we
obtain for δUep

δUep = A

[
γ2
0 (ω − kzu0)

(2γ2
0 + 1) (ω − kzV )

δn

n0

− kzu0γ0εν

m0c2(2γ2
0 + 1) (ω − kzVν)

δnν

n0ν
+

δBz

B0

]
, (34)

where A =
√

2GFeB0εF/π2
�

2c2.
If the mean velocity of the electron-positron fluid (gas)

is zero, then for γ0 = 1 we obtain from equation (34)

δUep = A

(
1
3

δn

n0
+

δBz

B0

)
· (35)

On the other hand, for u0 ∼ c and γ2
0 � 1, we have from

equation (34)

δUep = A

[
1
2

δn

n0
− kzu0

2 (ω − kzVν)
εν

m0c2γ0

δnν

n0ν
+

δBz

B0

]
·

(36)
The equations which we obtained contain two relativistic
fluxes, namely the electron-positron with the velocity u0,
and the neutrino with u0ν . For illustrative purposes, both
fluxes are supposed to be directed along the z-axis, as the
interaction is rather effective for this case. We note also
the set of equations describing the excitation of relativistic
Alfvén waves.

Let us now consider different types of instabilities.
First, we suppose that the electron-positron gas is in-

compressible, i.e. δn = 0. Here, δUep is given by

δUep = A

[
− kzu0γ0εν

m0c2(2γ2
0 + 1) (ω − kzVν)

δnν

n0ν
+

δBz

B0

]
·

(37)
Let us consider the case k⊥ = 0, which means δBz = 0.
Substituting (37) into (33) for the coinciding roots, viz.

ω = kzu0ν +
[√

3kzc/(2γ2
0 + 1)

]
+ iδ and ω = kzu0 + iδ,

we obtain

δ2 =
√

3
2

k2
z

γ0νγ0

A

m0
, (38)

and for the growth rate we have

δ � 10−18
√

B0kzc. (39)

To deduce the above expression, we have taken n0ν ∼
1036 cm−3, n0e ≈ n0p ∼ 1033 cm−3 and γ0 ∼ 10. For
typical magnetic field strengths [23,24], viz. B0 ∼ 1012

Gauss, and MeV neutrinos in the supernovae, we have

δ ∼ 108 s−1. (40)

When k⊥ �= 0, the second term dominates in the expres-
sion (37), and from (30, 32, 28) at δn = 0, we obtain the
equation for δBz. The result is

δBz

B0
= − 3ενk2

z

m0γ0(2γ2
0 + 1)

1
(ω − kzu0)

2

δnν

n0ν
· (41)

Substituting this expression into (37) and using equa-
tion (33), we obtain

[
(ω − kzV0ν)2− c2

(2γ2
0ν +1)

(
k2
⊥+

3k2
z

(2γ2
0ν +1)

)]
(ω − kzu0)

2

+
[
k2
⊥ +

3k2
z

(2γ2
0ν + 1)

]
3c2A

m0γ0γ0ν

k2
z

(2γ2
0 + 1)

= 0. (42)

Letting ω = kzV0ν − [c/(γ2
0 +1)]

√
k2
⊥(2γ2

0ν + 1) + 3k2
z +iδ

and ω = kzu0 + iδ in equation (42) we obtain a cubic
equation for δ, and the growth rate is

δ ∼
√

3
2

[
3
√

k2
⊥(2γ2

0 + 1) + 3k2
zcAk2

z

2m0γ0γ0ν(2γ2
0 + 1)

] 1
3

· (43)

Now we consider a more general case, namely when the
density of the electron-positron plasma is compressible.
In this case, from equations (28–32), we obtain the rela-
tion between δn and δnν including the expression for the
perturbation of the magnetic field. The result is

[(
(ω − kzu0)

2− 3k2
zc2

(2γ2
0 +1)2

)(
(ω − kzu0)

2− k2V 2
A+ ω2 V 2

A

c2

)

−k2
⊥c2 (ω − kzu0)

2

2γ2
0 + 1

]
δn

n0
=

εν

m0γ0

[
k2
⊥ (ω − kzu0)

2

+
3k2

z

(2γ2
0 + 1)

(
(ω − kzu0)

2 − k2V 2
A + ω2 V 2

A

c2

)]
δnν

n0ν
, (44)

and[
(ω − kzu0)

2 − k2V 2
A + ω2 V 2

A

c2

]
δBz

B0
=

k2
⊥c2

(2γ2
0 + 1)

δn

n0
+

k2
⊥εν

m0γ0

δnν

n0ν
· (45)
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We consider first relativistic Alfvén waves at u0 = 0, i.e.
in (44, 45) we suppose that γ0 = 1 and V 2

A � c2. Let us
investigate the left-hand side in (44). In this case, we can
rewrite (44) as

(
ω2 − ω2

−
) (

ω2 − ω2
+

) δn

n0
=

ενc2

m0V 2
A

×
[
k2
⊥ω2 + k2

zV 2
A

(
ω2

c2
− k2

)]
δnν

n0ν
, (46)

where ω− = kzc/
√

3 is the frequency of the new sound
waves, and ω+ = kc. This unusual dependence of the
frequency on the angle is due to strong magnetic fields,
which suppress the propagation of the usual sound waves
perpendicular to the magnetic field direction. In deducing
the left-hand side of equation (46), we have neglected a
term k2

⊥c4ω2/3V 2
A in view of the assumption c2 � V 2

A.
First, we consider the excitation of relativistic Alfvén

waves, which means that we let ω ∼ ω+ and ω � ω−.
These conditions allow us to simplify the expressions (34,
44, 46). Then the dispersion equation has the form

[
(ω − kzVν)2 − q2c2

ν

] (
ω2 − ω2

+

)
=

2q2k2

3
Ac2

γ0νm0
, (47)

where cν = c/
√

2γ2
0ν + 1 and q2 = k2

⊥ + 3k2
z/(2γ2

0ν + 1).
The growth rate in this case turns out to be

δ �
(

2qk

3cν

AcB0

γ0νm0

) 1
2

· (48)

For the same parameters, as given above, we have

δ ∼ (10−13B0)1/2k. (49)

Now we consider the excitation of the new waves by the
neutrino flux. From equations (33, 44–46) we obtain

[
(ω − kzVν)2 − q2c2

ν

] (
ω2 − ω2

−
)

=
q2V 2

A

3
k2

zA

m0γν
· (50)

For the non-degenerate roots ω � kzVν − qcν + iδ and
ω = ω− + iδ, we obtain the growth rate

δ ∼ 1
2

(√
2
3

1
cosΘ

1
c2

A

m0

) 1
2

kzVA, (51)

which takes the form

δ ∼ (10−35B0)1/2kzVA. (52)

Next, we consider non-relativistic Alfvén waves for which
V 2

A � c2. Introducing Ω = ω−kzu0, we can rewrite equa-
tion (44) as

(
Ω2 − ω2

−
) (

Ω2 − ω2
+

) δn

n0
=

ενc2

m0γ0V 2
A

×
[
k2
⊥Ω2 +

3k2
z

(2γ2
0 + 1)

(
Ω2 − k2V 2

A

)] δnν

n0ν
, (53)

where

ω2
∓=[(k2V 2

A+k2c2
ν)/2]∓k2

√
(V 2

A+c2
ν)2−4V 2

Ac2
ν cos2 Θ

are the fast and slow magnetosonic waves. For the mag-
netic field perturbations, we have

(
Ω2 − k2V 2

A

) δBz

B0
=

k2
⊥c2

(2γ2
0 + 1)

δn

n0
+

k2
⊥εν

m0γ0

δnν

n0ν
· (54)

We suppose that neutrinos as well as electron-positrons
are strongly relativistic and γ0 ∼ γ0ν . In this case, equa-
tion (33) can be written as

(
Ω2 − q2c2

ν

) δnν

n0ν
= q2 δUep

m0νγ0
· (55)

Having equations (53–55) and the expression (34) for the
fast magnetosonic waves (Ω2 ∼ ω2

+, Ω2 � ω2
−), we obtain

the dispersion relation as

(
Ω2 − q2c2

ν

) (
Ω2 − ω2

+

)
=

q4γ0

(2γ2
0 + 1)

Ac2

m0
· (56)

Again for Ω � qcν + iδ and ω+ + iδ, we obtain

δ2 =
q3γ0

4(2γ2
0 + 1)cνω+

Ac2

m0
· (57)

For the slow magneto-sound waves we have

δne

n0
=

k2V 2
A

ω2
+

3k2
z

(2γ2
0 + 1)

εν

m0γ0

1
(Ω2 − ω2−)

δnν

n0ν
, (58)

or for the coinciding roots Ω � ω− + ∆ ≈ qcν , we have

δne

n0
=

k2V 2
A

2ω2
+

3k2
z

(2γ2
0 + 1)

εν

m0γ0

1
ω−∆

δnν

n0ν
· (59)

For the slow magneto-sound waves, excited by the neu-
trino flux, the growth rate is

δ = ω−

(
3
4

k2V 2
A

ω2
+

qk2
z

ω3−

Ac

m0

) 1
2

· (60)

The above analyses reveal that intense neutrino beams
efficiently generate MHD waves in a very dense, strongly
magnetized pair plasma.

6 Discussion and conclusions

In this paper, we have developed the electrodynamics of
nonlinearly interacting intense neutrino bursts and dense
pair plasmas in an external magnetic field. Accounting for
the fully relativistic effects, we have derived the governing
equations for the neutrinos and a set of RMHD equations
for pairs including the neutrino driving force. The gov-
erning equations are Fourier analyzed to obtain disper-
sion relations for MHD waves in the presence of intense
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neutrino beams. The dispersion relations are analytically
analyzed for several interesting cases. It is found that the
free energy of the neutrino beams is coupled to Alfvén-
like waves which arise in a relativistic pair plasma. For
typical supernova plasma parameters, the growth rates of
the MHD waves are quite substantial. The neutrino driven
MHD waves constitute a new turbulent state in supernova
as well as in the magnetosphere of neutron stars. Thus,
the frequency spectra can provide valuable information
regarding the ambient plasma parameters in astrophys-
ical settings. On the other hand, parametrically excited
large amplitude MHD waves are also expected to play
a role in accelerating particles and causing non-thermal
transport in a very dense magnetoplasma that contains
relativistic neutrino beams and electron-positron pairs.
In conclusion, it is possible that collective plasma inter-
actions, as described here, may help to understand the
origin of gamma-ray bursts that are produced by ultra-
relativistic electron-positron plasma jets (fire balls) in a
compact region where a vast reservoir of neutrinos, with
energy ≥ 1051 erg, exists.
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